Cuando los estudiantes se enfrentan a los cursos iniciales de microeconomía, macroeconomía o tópicos de crecimiento económico, es muy usual que se desarrollen problemas de optimización estática, en los cuales normalmente se presentan una función objetivo y una o varias restricciones.
Muchos ya tienen como regla memotécnica plantear un lagrangeano y comenzar a obtener las condiciones de primer orden, es decir, derivar es el camino a la solución.
Sin embargo ¿Qué sucede cuando se enfrentan a una función leontief (complementos perfectos)?, el camino de la derivación no es la solución, ¿por qué? Depende de la característica de diferencialidad y continuidad de una función. Se dice que una función es diferenciable, si es posible obtener en todos los puntos de su dominio una derivada. De forma más intuitiva, podemos decir que las derivadas pueden obtenerse de aquellas funciones que tienen curvas “suaves”. Una función no diferenciable, por ejemplo, serían aquellas que tienen curvas con “puntas”, como la función de valor absoluto , Y= |X|, ya que no existe para esta función una línea tangente para el punto (0,0). Para interpretarlo mejor observemos el siguiente gráfico (hacer clic en imagenes para expandir).
Todas las funciones que son derivables son continuas, sin embargo no toda función continua es derivable. La función de valor absoluto es continua pero no derivable.
Las funciones Leontief , tambien llamadas de complementos perfectos o de proporciones fijas, son funciones continuas pero no derivables; por lo tanto la solución de un problema de maximización que contiene funciones tipo leontief difiere, ya que no podemos resolver derivando a través de un lagrangeano; aunque el proceso de solución es más simple de lo que podríamos imaginar, veamos el siguiente ejemplo:
Muchos ya tienen como regla memotécnica plantear un lagrangeano y comenzar a obtener las condiciones de primer orden, es decir, derivar es el camino a la solución.
Sin embargo ¿Qué sucede cuando se enfrentan a una función leontief (complementos perfectos)?, el camino de la derivación no es la solución, ¿por qué? Depende de la característica de diferencialidad y continuidad de una función. Se dice que una función es diferenciable, si es posible obtener en todos los puntos de su dominio una derivada. De forma más intuitiva, podemos decir que las derivadas pueden obtenerse de aquellas funciones que tienen curvas “suaves”. Una función no diferenciable, por ejemplo, serían aquellas que tienen curvas con “puntas”, como la función de valor absoluto , Y= |X|, ya que no existe para esta función una línea tangente para el punto (0,0). Para interpretarlo mejor observemos el siguiente gráfico (hacer clic en imagenes para expandir).
Todas las funciones que son derivables son continuas, sin embargo no toda función continua es derivable. La función de valor absoluto es continua pero no derivable.
Las funciones Leontief , tambien llamadas de complementos perfectos o de proporciones fijas, son funciones continuas pero no derivables; por lo tanto la solución de un problema de maximización que contiene funciones tipo leontief difiere, ya que no podemos resolver derivando a través de un lagrangeano; aunque el proceso de solución es más simple de lo que podríamos imaginar, veamos el siguiente ejemplo:
Sin embargo, las respuestas óptimas que se obtengan (respecto al bien X y al bien Y ) pueden ser en la mayoria de los casos números no enteros ¿ como puedo demandar 1.5 autos, 2.3 casas etc? , por lo que en la practica se realiza una aproximación, esto indica que las posibilidades de la respuesta óptima son: que la curva de indiferencia sea tangente a la linea de restricción presupuestaria o que este por debajo (holgura), para este caso en particular de un problema de maximización con una función leontief.
Ahora podemos decir, que era más fácil de lo que pensabamos en un inicio!
Que significa s.a. y I? y por que quedan de esa formas las ecuaciones de X optimo y Y optimo
ResponderEliminarEs un problema de optimización con restricciones, por lo tanto se dice que se va a maximizar una función sujeta a (s. a.) la restricción que en este caso es la recta presupuestaria donde I = Ingreso, Px = Precio del bien X y Py = Precio del bien Y
EliminarS.A = sujeto a:
EliminarEn el caso del productor, que tiene una función de producción tipo Leontief, como se calcula la maximización del beneficio?
ResponderEliminarComo se resolveria la siguiente función Y=X^tZ^t
ResponderEliminary respectiva grafica
El coeficiente t es tiempo? Estaria sujeta a una restriccion lineal? Dame mas informacion y te podria apoyar saludos
Eliminaren este tipo de función siempre va a ser lo mismo producción (K) que trabajo(L)
ResponderEliminarSe iguala por que se supone que existe una relación de proporciones fijas, en el caso de funciones de producción, la proporción fija será entre capital (K) y trabajo (L). Si se define como un concepto económico, esta relación indica complementariedad perfecta
EliminarEn Y optimo al pasar (beta/gamma) te quedarian en la parte izquierda y+y no entiendo porque en la funcion no sale dividiendo ese 2.
ResponderEliminarComo seria la RMS de una Leontief??
ResponderEliminarSiendo un caso "no regular" en el sentido de que las curvas de indiferencia no son decrecientes ni convexas, por lo tanto el grado de sustitubilidad entre factores es cero, ya que debe mantenerse una proporción fija independientemente de que los precios y/o el ingreso varien;espero haber aclarado un poco tu interrogante, podrías revisar el post sobre la función CES, ahí se presenta la función León tiene como un caso especial. Saludos
EliminarComo seria la RMS de una Leontief??
ResponderEliminarQué buen blog! =) una consulta, y si quisiera graficar la optimización entre la utilidad y mi recta de restricción presupuestaria, qué comandos me ayudarían a hacerlo en matlab? Si fuera una función coubb douglas
ResponderEliminarSaludos!
Excelente aclara la duda para bienes perfectamente complementarios
ResponderEliminar